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Double structures of steady streaming in the oscillatory 
viscous flow over a wavy wall 
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Research Institute for Applied Mechanics, Kyushu University, 

Fukuoka 812, Japan 

(Received 11 September 1978) 

The steady streaming induced by oscillatory viscous flow of small amplitudes over a 
wavy wall has been analysed, and the computed flow patterns have been found to 
agree well with the fiow patterns visualized experimentally in a tube. When the first 
parameter, L/6 (the ratio of the wavelength of the wavy wall to the thickness of 
Stokes layer), becomes larger than about 26, the streaming has a double structure 
consisting of regions of upper and lower pairs of recirculations. As the second 
parameter, a/8 (the ratio of the amplitude of the wavy wall to the thickness of Stokes 
layer), is increased, the upper pair of recirculations squeezes in a gap between the lower 
recirculations above the troughs of the wall. A similar double structure of steady 
streamings was also observed above ripple marks formed under oscillatory viscous 
flow. A bearing is suggested of this phenomenon on the determination of stationary 
profiles of ripple marks. 

1. Introduction 
The steady streaming induced by oscillatory flow over a wavy wall has been an 

important subject in the study of the formation of ripple marks under water waves 
(Uda & Hino 1975; Sleath 1976; Kaneko & Honji 1978). The oscillatory flow over a 
wavy wall is very complicated since two representative length scales, the wave- 
length and the wave height of the wall, are concerned. Lyne (1971) studied the steady 
streaming over a wavy wall and suggested that the streaming has diverse etructures 
depending on the profile of a wall and other flow conditions. For both the amplitude 
of oscillation and the thickness of the Stokes layer much smaller than the wall wave- 
length, the streaming acquires double structures, of which the vertical scale is nearly 
equal to the wavelength. 

In  this paper, an attempt is made to extend Lyne’s theory by considering higher- 
order solutions of a similar perturbation scheme. This enables us to obtain different 
double structures of the streaming, which are in agreement with the results of flow 
visualization experiments in a tube. In  $5 2 and 3 respectively, the methods of analysis 
and experimental procedures are described. In 5 4, the experimental results obtained 
by means of a rigid wavy wall are presented in parallel with those of analysis. Some 
experimental results on the formation of ripple marks under oscillatory viscous flow 
are also presented in 3 5.  
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2. Analysis 
Let us consider the vorticity equation for two-dimensional oscillatory flow over an 

infinite wavy wall. We shall make use of rectangular Cartesian co-ordinates (5, y), 
with x measured parallel to the mean level of the wall and y measured normal to it. 
Lett denote time andY a stream function. We introduce the following non-dimensional 

7 = wt, € = 2a/L, 6 = (2v /w)4 ,  

quantities, $ = Y/U, 6, 6 = x/L, 

where 6 is the thickness of the Stokes layer, L the wall wavelength, and v the kinematic 
viscosity of a fluid. The quantities U,, w and a are%he maximum flow velocity, the 
angular frequency, and the amplitude of fluid oscillation a t  7 = 00, respectively. The 
basic equation in a non-dimensional form is 

a 2  2 a 2  

D2 = -+ (i) a52. ar2 
where 

A profile of the wall is given by 

(3) 
l% 

7 - - cos zn'g, 
O - 6  

where a is the amplitude of the wall. The boundary conditions for (2) may be assumed 

II. = a$-/@ = 0 on 7 = y o ,  here to be 

a$/a7-+cosr as r,~+co. (4) 
Let us consider only the case E < I and look for a perturbation solution for (2) of a 

form 11. = $0+EII.1+s2$2+ . I . .  

Substituting ( 5 )  into (2) and equating like powers of E ,  we obtain the equation 

a 
2% (D2$o) = D2(D2$o) 

for €0. 

We expand the solution of (6), 11p0, in a form 

I = w [ ei7 c f n ( 7 / )  cos 2nnE ) 

m 

n=O 

where 92 denotes 'real part of'. Substituting (7)  into (6) and eliminating the sum- 
mation symbol from the resulting equation, we obtain 

d 4 f ,  - 2[(nk6)2+ i] - -+ (nks)2 [(nkS)2+ 2i]f, = o for n = 0, I, 2, . . ., 

where the wavenumber k = 2n/L. Taking into account the boundary conditions as 
q+co in (4), we obtain the solutions for (S), 

(8) 
dYn 

dT4 dr2  

fo = ~ + a o + b , e x p [ - ( l + i ) ~ ]  for n = 0,  

f, = a,exp(-v,r)+b,exp(-nkGy) for n 2 1, (9) 
where vi = (nkS)2+ 2 i .  Since we consider the case a/& < 1 ,  like Lyne, the boundary 
conditions for 7 = qo in (4) may be expanded in the Taylor series a t  7/ = 0. In  
(9)) fo corresponds to the Stokes shear-wave solution for a flat wall and is of order 
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(a/S)O. Equating like harmonic terms of ( in the expansion and considering the order 

(10) 
off,, we canestimatefn as f n  0 [ ( ~ / 6 ) n ]  for 2 1. 

By neglecting the terms of orders higher than (a/Q2, for example, two boundary 
conditions on y = qo become: 

and 

and 

and 

When orders up to  ( a / S ) n o  are considered, the corresponding boundary conditions are 
given by means of similar procedures. We can thus determine the unknown coefficients 
for fn (n = 0,1,2, . . . , no) from these boundary conditions. 

Let us consider the terms of order in (2); we obtain 

Substituting ( 7 )  into the right-hand side of (13), we see that $l may be written as the 
sum of a term independent of T and a term depending on T as eZiT. Attention is now 
focused on the term independent O ~ T .  We put the steady part of$, into +s and write 

where the asterisk denotes 'complex conjugate'. When the orders up to (a /6)m are 
considered, the equation for f, becomes 

$8 = f s  +fs*, (14) 

where [ ] on the summation symbols indicates that  the largest possible integer should 
be taken. 
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We now look for a solution of (15) of the form 

where g, N 0[(a/8)12]. Substituting (9) and (16) into (15)) we obtain the equation 

(nkS)2 gn = -nni[a,exp ( -  g , ~ )  - 2(1 -i)anb,* exp { - (g,+ 1 -i) y} 
- (1 -i)b,b,*exp{ - (nkS+ 1 -i) r}] 
+ - z (n - m) [cr.;lla.;ll b,, exp { - [c2 + (n - m) k81 r} 

+ 2 ~ :  a& a,, exp { - ( ~ 2  + v,-,,J r}  
+ mk8b: an- exp { - (g,+ + mk8) r}I 

3” 
ni 
2 m = l  

+ 2gtE+, a%+, a, exp { - (g?n + 4+,) 31) 
+ (m + n) k8am b$+, exp { - [cm + (m + n) k81 r}] (17) 

for g, (n = 1,2, . . . , no), where the last two terms of the right-hand side of (17) disappear 
for n 2 no - 1. The boundary conditions for (1 7 )  become 

for n = I ,  2, . . ., no. The solutions gn (n = 1,2, . . . , no) for (1  7)  are given by 

gn = Ag’exp ( -  c , ~ )  + Ak2)exp [ - (g,+ 1 -i) r] + A g )  exp [ - (nk8+ 1 - i) 71 

+ (A:) + A2)q) exp ( - nkSy) 
n 

m = 1  
+ c [ B ~ L  exp { - + (n - m) k81 7) + exp { - (4 + gn-m) r} 
+ BSh exp { - (gn- + mk8) r}l 

+ z 
+ BEk exp { - (rm+, + mk8) r )  
+ BXL exp { - (gtE+, + mk8) r}  + Bfh exp { - (urn + d+,) a> 
+ BfL exp { - [gm + (m + n) k81 r)l, 

tf(no-n)l 

m = l  
[ B ! ~ L  exp { - [c.;ll + (m + n) k8I r} + XL exp { - (d + g,+,) r}  

(19) 

where the coefficients in (19) are to be determined from (17) and (18). The solution g1 
almost coincides with Lyne’s solution obtained by making use of orthogonal curvi- 
linear co-ordinates. 
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FIGURE 1. Schematic diagram of experimental set-up (dimensions in om). The arrow indicate6 
the direction of light projection. (a)  Test section, (b )  wavy wall, (c)  piston, (d) camera. 

Considering the terms of order s2 in ( 2 ) ,  we obtain 

Since the terms independent of 7 do not appear in the right-hand side of (20), 3b2 has 
no steady part. Therefore,'the stream function $, can be written from (14) and (16) as 

II., = x no G,(y) sin 2nng + 0 ((;)"",.). 
n= 1 

where Gn(r)  = gn(y) +gz(q).  The non-dimensional wall shear stress (7,) induced by 
steady streamings can be written as 

sin 2nnt + o 1 (f) %Of', 8). d2Gn(0) 
7,= ~ 

n-1 dr2  

When the values of parameters L/S( = 2n/kS) and a/S are given, we can determine 
numerically the streamlines and the wall shear stress for steady streamings by ( 2 1 )  
and (22), respectively. The results computed up to the order of (a/6)' are given in 3 4. 

3. Experimental methods 
The experiment was carried out with a U-shaped rectangular tube illustrated in 

figure 1. A test section of the tube made of a transparent plastic plate is 15 x i5 cm 
in. cross-section and 60 cm in length. In  order to reduce flow disturbances, two corners 
of the tube are curved smoothly. A fluid in the test section was oscillated by a motor- 
driven piston. The maximum period and the maximum amplitude of fluid oscillation 
were 1.1 s and 5.5 cm, respectively. Three wavy walls made of a thin aluminium plate 
were used as test walls, of which wavelengths were 4, 8, and 12 cm. One of the walls 
was placed on the bottom floor of the tube. The amplitude of fluid oscillation was 
0.6 cm. The profile of the walls was approximately sinusoidal. The wave height was 
0*3cm, and the values of the steepness were therefore 1/13.3, 1/26.7, and i/40*0. In 
the experiments on the formation of ripple marks, a layer of glass beads 1 cm thick 
replaced the test walls. The mean diameter of glass beads was 0.028 cm. 
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FIGURE 4 (a). For the legend see p. 733. 

All the experiments were carried out using glycerin-water solutions with v ranging 
from 0.81 to l.20cm2s-l. A slight optical inhomogeneity of the solutions was used to 
visualize the flow pattern of steady streamings. This direct shadow method was 
initiated by Hagerty & Mich (1950), and applied recently to visualize the steady 
streaming over a wavy wall by Hino & Fujisaki (1977). The test section filled with the 
fluid was projected through a first side wall by a nearly parallel beam of intense light, 
and the resulting shadows on a white paper put on the back of a second side wall were 
photographed by a 35 mm camera. 

4. Flows over rigid wavy walls 
As described in Q 2, streamlines for steady streaming over wavy walls have been 

computed numerically. The streamlines are plotted over one wavelength ranging 
from crest to crest; the horizontal unit scale is L and the vertical one is S in all the 
computed figures. Two neighbouring streamlines in each figure have the same dif- 
ferences in the value of II.,. 

Figure 2 (a) (plate 1) shows the computed streamlines at L/S = 7.3 and a/S = 0.27. 
When L/6 is as small as the value for figure 2 (a) ,  the steady streaming forms a pair 
of recirculations having a vertical scale comparable to the wavelength and rotating 
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FIGURE 4. Computed flow patterns at L / S  = 39. 
(a) a/& = 0.05, ( b )  a/& = 0.47, (c) a/& = 0.7. 
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FIGURE 5. Profiles of g, (n = 1,2 ,3 ,4) .  

( b )  

FIGURE 6. Distributions of wall shear stress: (a) for 
figure 4(a) and ( b )  for figure 4(c). 
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2a (JJ V 8 L a aa /L(=c)  L/b  a/6 
(cm) ( r d s - l )  (cm2s-1) (em) (cm) (em) 

Experiment 1 5.5 9.6 1-20 0.50 9 0.3 0.61 18.0 0.60 
Experiment 2 11.0 6.0 1.20 0.63 10 0.4 1.10 15.9 0.63 

TABLE 1. Data for flows over ripple marks. 

in such a direction that the flow along the bottom surface goes up the slopes of the 
wall. It should be noted that this direction of the flow is evidently favourable in making 
up ripple marks. Figure 2 ( b )  shows a flow pattern visualized under the same flow 
conditions as those for figure 2 (a) .  Although the steady streaming began to develop 
immediately after the fluid oscillation had started, it  took more than 5 minutes to 
reach the stationary state. All the presented pictures are of a stationary state. Agree- 
ment between figures 2 (a, b )  is good, when observing the position of vortex centres 
and the vertical scale of the regions of recirculations. 

Figure 3 (a )  (plate 2 )  shows the computed flow pattern at  L/8 = 28 and a/8 = 0.47. 
When L/8 is increased, the recirculation regions are flattened in shape and a new 
pair of recirculation regions appears above the former ones. The flow direction of the 
upper recirculation is opposite to that of the lower one. Such a double structure of 
steady streamings appears at  a critical value of L/6 = 26.  This critical condition is 
almost independent of a/&. Figure 3 ( b )  shows a visualized flow pattern with the flow 
conditions nearly equal to those for figure 3 (a).  A pair of upper weak recirculations 
is also formed above the trough of the wavy wall. 

Figure 4 shows a series of the computed streamline patterns for a large value of 
L/S ( = 39). When a/& is small, the flow pattern almost coincides with those of Lyne 
as shown in figure 4 (a) .  As a18 is increased, g, (n > 2) neglected in Lyne’s analysis 
affects the structure of steady streamings, and the upper pair of recirculations squeezes 
in a gap between the lower recirculations as shown in figure 4 ( b ) .  At present, no 
process of determination of L is known for real ripple marks. There seems to be a 
possibility that squeezing of the upper recirculations may serve as a clue in under- 
standing the process. Figure 4 (c) shows the computed flow pattern for a large value of 
a/8( = 0.7). The upper recirculations are reduced in intensity, and their vortex centres 
approach to the wall surface appreciably. 

Figure 5 shows profiles of g, (n = 1 ,2 ,3 ,4 )  computed under the same conditions as 
figure 4 (c). Each value of gn is normalized by the maximum value of 9,. It is seen from 
the figure that, when a/8 is as large as the value concerned here, g, has a magnitude 
comparable to that of g ,  and must be retained in the determination of flow patterns. 
It is seen also that the effect of g, (n 2 3) on the flow pattern may decrease rapidly. 

The distributions of r8 for both cases of figures 4 (a,  c )  are shown in figure 6, in which 
T~ is normalized by its maximum value. As a/& is increased, the slope of the curve 
decreases gradually at a trough. However, figure 6 indicates that the upper pair of 
recirculations is not in touch with the wall surface. 

Figure 7 (a )  (plate 3) shows a visualized flow pattern in conditions similar to those 
for figure 4 ( b ) .  The upper region of recirculations is developed over the lower ones 
as has been predicted by the theory. The flow pattern around a trough is shown in a 
magnified scale in figure 7 (b ) .  The bottom of the upper recirculations looks as if it 
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were rooted to the wall trough by pushing aside the lower recirculations. This seems 
to support the aforementioned possibility that squeezing of the upper recirculations 
may affect the formation of real ripple marks. 

5. Flows over ripple marks 
It has been found that ripple marks are formed under oscillatory viscous flow by 

using glycerin-water solutions as a working fluid. Two kinds of experiments were 
carried out at different values of 2a/S, which corresponds to the Reynolds number 
for oscillatory viscous flow over a flat wall. The experimental data are given in table 1. 

Figure 8 (plate 4) shows an instantaneous pattern of steady streamings over the 
stationary ripple marks, at  2a/S = 11.0 and a t  the values of other parameters shown 
in experiment 1. When a stationary profile of ripple marks was reached, the steady 
streaming became to have a regular double structure consisting of the regions of 
upper and lower pairs of recirculations. The bottom of the upper recirculations pushing 
aside the lower ones approached the surface of ripple marks. No separation region is 
seen in figure 8. 

Figure 9 (plate 4) shows a flow pattern a t  2a/S = 17.5 and at  the values of para- 
meters shown in experiment 2. As 2alS is increased, clear streamlines of the lower 
recirculations disappear and the flow begins to separate from the crests. Experiments 
1 and 2 show that the double structures of steady streamings appear at L/6 = 18.0 
and 15.9, respectively. These values of L/S are smaller than 26 predicted in 0 4. These 
differences may be due to the effect of increasing E on the structure of steady streamings 
in figures 8 and 9. 

6. Conclusions 
Streamline patterns of the steady streaming induced by the oscillatory viscous 

flow over a rigid wavy wall have been computed and compared with flow patterns 
obtained by means of the direct shadow method. Agreement between the theory and 
the observations for overall flow patterns has been satisfactory. Streamings over the 
ripple marks have also been observed. 

The results are as follows. (1)  The steady streaming has a double structure consisting 
of the upper and lower regions of recirculations, when LIS > 26 approximately. The 
appearance of the double structure is almost independent of a/&. (2) As a/& is increased, 
the upper pair of recirculations squeezes in a gap between the lower recirculations at 
the trough. (3) The ripple marks are formed under oscillatory viscous flow. When ripple 
marks become stationary, the streamline patterns become to have a double structure. 

The authors wish to thank Prof. J. Okabe, Prof. M. Takematsu, and Dr M. Oikawa 
for valuable discussions. The authors also wish to thank Y. Shiraishi, N. Matsunaga, 
and M. Kamachi for technical assistance. 
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( 1 1 )  

FIC:UILE 3. Floxv patterns at a, initiation stitgo of upper recirculation rogiuns. (a) (‘omputed flow 
pttttorn; L/S = 28 arid a/S = 0.47. ( b )  Observed flow pattern; L / S  = 34, cr/S = 0.46. L = 8cm, 
a = O ~ l B c i i i ,  v = O.X(icrn2s- l ,  and 8 = 0.33cin. 
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FIGURE 8. Flow patterns over ripple marks at  2a/6 = 11.0. 

FIGURE 9. Flow patterns Over ripple rnarlts a t  2a/S = 17.5. 

Plate 4 


